
Height=80 m, N=835, Average 600 s
Slope =1.008+/- 0.0007, R2=0.998+/-0.0001
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The Two Existing Technologies

LIDAR
• Scatters light from natural 

particles

• Lowest height ≈ 40m
• Highest reading ≈ 150m
• Averaging time ≈ 10 min
• Cost ≈ €150 k 
• Maintenance: currently 

high, longer term 
unknown

SODAR
• Scatters sound from 

turbulent temperature 
variations

• Lowest height ≈ 10m
• Highest reading ≈ 1000m
• Averaging time ≈ 10 min
• Cost ≈ €35 k
• Maintenance: currently 

low and well-established
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A careful, unbiased field trial

Calibration uncertainty ±0.1%
Variation with height ±0.3%
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LIDAR vs SODAR Performance?
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Difficult to find independent comparisons which compare 
LIDARs and SODARs under similar conditions !
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Are Comparisons Reliable?

• Many comparisons and field tests are done by 
companies or institutions which have major financial 
commitments (ownership of instruments, dependency 
on grants, development contracts, etc), particularly with 
the more expensive LIDARs.  This can mean they 
concentrate on the product which has the greatest 
financial impact on them

• Many comparisons and field tests do not give enough 
statistical information to allow solid judgement to be 
made
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E. g. Correlation: σR2 = 2(1- R2)/N1/2

R2 N = 200 N = 400

0.97 0.9658- 0.9742 0.967- 0.973

0.98 0.9772- 0.9828 0.978- 0.982

0.99 0.9886-0.9914 0.989- 0.991
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E. g. Typical remote vs mast output

Really important
• Fit a straight line through the origin (why expect non-zero   remote 

wind when actual wind speed is zero ?) 
• Number of data points N (affects uncertainties)
• Averaging time
• Height
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N=358, Average 600 s, Slope =1.05+/- 0.02, r2=0.9866+/-0.001
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Root-mean-square deviation
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• Is correlation coefficient R2 important? (what will you do with it?)
• Are instrument calibration details important? (as long as they are stable)
• The important parameter is the most likely size of wind speed error
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What does the extra €110k buy you ?

A LIDAR has
• A smaller (but heavier) box
• Quiet operation (but with turbine noise and distance from 

housing, who cares?)
• Marginal increase in R2 (perhaps)
• Marginally improved accuracy of wind speed ??
• Increased maintenance costs (probably)
• Decreased performance in rain and fog
• Higher power consumption
• No data below 40m or above 150m
• Large height steps (poor vertical resolution)



THE UNIVERSITY OF AUCKLAND
NEW ZEALAND

History and What is Next

• Big advance in SODARs in 1980s with multi-
speaker/microphone phased-array technology

• Big advance in LIDARs in 2000s with fibre-based lasers: 
directly impacting on wind energy

• SODAR developers are only now responding to the 
impact of LIDARs in wind energy: expectation from new, 
intense, R&D is another “technology leap”
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SNODAR

• 1m resolution
• Autonomous operation through Antarctic winter
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SONDE

• Long (several seconds) FM-CW acoustic pulses

• Huge increase in signal strength (30 dB)

• Wind speed estimates every few meters, and every few 
seconds

• Some remaining technological challenges

• Current work on real-time tracking of aircraft wing-tip 
vortices (during landing and take-off)
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New Acoustic Wind Profilers

Triton
• Similar acoustic design to 

long-established ASC 
(AeroVironment) and 
ART SODARs

• Solar powered

AQ500
• Innovative acoustic 

design (3 dishes, 3 tilted 
beams, small footprint, 
reduced diffraction)

• Generally needs 
additional baffles
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Data availability (example from an AQ500)
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Where will Improvements be Made?

For SODARs:
• Clutter (ability to operate near masts etc, quieter)

• Smart signals (to give shorter averaging times, lower rms 
errors)

• Lower power

• Compact (smaller footprint)

• Better operation in rain
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Acoustic camera picture of diffraction
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Beam design

Plot of measured and modelled correlation between winds measured
by different beam combinations on the same 5-beam SODAR

At 60m, the time taken for air to travel from one beam to another (at the 
wind speed during these measurements) is equal to the time 
between acoustic pulses

The shape of this curve is a measure of the spatial correlation for wind
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Bistatic SODARs

• Useful to separate 
transmitter and receiver 
(‘bistatic’) so that turbulent 
velocity fluctuations are 
also measured

• The ‘break-even’ angle is 
about 11°: this would 
require separating the 
transmitter and receiver by 
about 20m
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“Piccolo” Bi-Static + Smart signals

• Continuous cycle step-chirp
• Unfortunately, the direct signal saturated all channels so all useful 

data is lost during those periods (it needs acoustic baffles)
• However, beam-forming for z = 32m, picks up the gaps at 0.3s, 0.4s, 

…,0.9s.  Adding resulting power spectra gives 8 dB improvement for 
SNR of the 3000 Hz signal.  This is a very useful increase!
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The Next-Generation SODARs

• Will look different (smaller, new acoustic design)

• Will be quiet, except when alongside

• Will sound different (smart signals)

• Will be solar-powered

• Will clearly surpass current LIDAR performance
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Summary

• Next-generation SODARs, with very superior 
performance will emerge in the next 2-3 years

• The design challenges are not extreme

• In an increasingly recession and risk-averse 
financial environment, the business case for 
SODARs is strong


